

2

Table of Contents
Table of Contents 2

1. Introductory Material 4
1.1 Acknowledgement 4
1.2 Problem Statement 4
1.3 Use Case Diagram 5
1.4 Intended Users and Intended Uses 6
1.5 Assumptions and Limitations 6

2. Specifications and Analysis 7
2.1 Functional Requirements 7
2.2 Non-Functional Requirements 9
2.3 Interface Requirements & Specifications 10
2.4 Technologies Used and Rationale 11

2.4.1 Mobile Development Framework: Android Studio 11
2.4.2 Machine Learning Framework 11
2.4.3 Database: Firebase Cloud Firestore 11

3. Revised Design 14
3.1 System Components 14

3.1.1 Component Diagram 14
3.1.2 Models 15
3.1.3 Services 17

3.2 System Design 20
3.2.1 Location Tracking and Verification 20
3.2.2 External API Data Collection 21
3.2.3 Data Design 22
3.2.4 Scheduling Algorithm 23
3.2.5 User Collaboration Design 23
3.2.6 Machine Learning Design 25
3.2.7 User Interface Design 26

4. Implementation 27
4.1 Software Implementation Plan 27
4.2 Major Features & Implementation Strategy 28

4.2.1 Dynamic Schedule 28
4.2.2 Collaborative Schedule 28
4.2.3 Social Media Features 29

3

4.2.4 Analytics, Progress Tracking and Recap 29
4.2.5 Push Notifications 30
4.2.6 Recommendations 30

5. Testing 31
5.1 Functional Testing 31
5.2 Non-Functional Testing 33

6. Closing Material 34

7. References 35

Appendix I: Operation Manual 36
Getting started 36
Signing In 38
Scheduling Activities With Other Users 38
Creating an Activity 39
Creating a Task 39
Add Friends 40
Completing Tasks 40
Viewing Categorized Tasks 41
Using the Location Picker 41
Viewing Notifications 42
Viewing Your Daily Activity 42
Interacting With Your Schedule 43

4

1. Introductory Material
1.1 Acknowledgement

We would like to thank Iowa State’s Dr. Goce Trajcevski for giving technical advice and
resources in our weekly meetings. We would also like to thank the Iowa State University
Department of Electrical and Computer Engineering for the opportunity to work on this project
and gain professional experience before graduation.

1.2 Problem Statement

Today’s world is filled with productivity-assisting and enhancing applications. These digital
organization methods offer many benefits including organizing your busy life, staying on top of
your events or tasks, and improving your time management. Popular calendar apps like Google
Calendar and Apple Calendar are free to use, allowing millions of people to take advantage of
their services. In fact, these digital calendar applications are so popular that more than 70% of
people rely on them in their daily lives (Ecal). In addition to that, the software world offers nearly
17 million applications to help a person create and manage lists of tasks they need to complete
(Kashyap, Vartika). Obviously, there is a high demand for applications that assist in managing
your hectic life, but in reality, how much are these apps are actually adding to your life? How
many benefits do these applications provide over using pen and paper? Most importantly, how
are these applications coaching you to improve your productivity or help improve your quality of
life? When using a classic productivity app, it is your job to input and manage your schedule and
tasks, but what if the technology was able to do that for you? What If there was a technology
that already knew what you did throughout the day and used that to help guide you to spend
your time in a more effective way?

To solve this problem we have developed GoMe, a social media application that combines the
successes of existing productivity systems and goes multiple steps further by adding features to
help you stay on top of your life. GoMe keeps a record of what you’ve done throughout your day
like sleep, work, and social activities. By using device location, the application recognizes how a
user is spending their time and will make adjustments if it acknowledges the user is not sticking
to their schedule. Going further, GoMe takes the user’s list of created to-do items and integrates
them into their schedule while making sure to prioritize the user’s time towards the most
important tasks. By analyzing a user’s time consumption, GoMe captures and categorizes your
life into simple containers like work, sleep, social time and wellness. This data is used to
suggest activities on your calendar that could make you a more balanced person, ensuring that
you spend time in the different areas essential to living a healthy life. On top of all of this, GoMe
is also a robust social media application, allowing for user profile customization, group tasks and
activities, recommended social activities, and even a feature to find and schedule an activity
with a group of people based on availability. Overall, GoMe aims to be one’s very own personal
assistant that helps you optimize your daily life without having to manage it yourself. In the end,
GoMe will pave the way for you to increase your potential in all major areas of life.

5

1.3 Use Case Diagram

Figure 1: Use Case Diagram

Our updated Use Case Diagram fully demonstrates the use case actors, services and cases for
our final application. For graphic simplicity, Firestore connections are black-boxed for the use
case diagram.

6

1.4 Intended Users and Intended Uses

The intended users for our application are people who want to optimize their schedule to
increase their productivity and balance their time. User’s will typically be schedule-oriented and
have the desire to track their activities in order to reach optimum hours of sleep and/or work
goals while still making time for social events and/or other activities.

We intend for users to use our application on a daily basis to track their schedule. According to
the use case diagram above (​Figure 1​), they will be able to use the application to view and
update their schedules, activities, and tasks. A user will also be able to create and update a
viewable profile page. Examples of more specific use cases would be recommending activities
the user could complete with their friends, suggesting an optimal time to go to sleep, or
proposing ways to spend free time.

1.5 Assumptions and Limitations

Assumptions
● Users will carry their powered-on cell phones to/from all activities
● Users will have the app enabled consistently in order to track location data
● The technologies used within the application will secure user information as indicated

Limitations
● Application is only available on Android devices
● Application must not use an unreasonable amount of battery life in order to ease

problems for the user

https://docs.google.com/document/d/1GQQi0hVw2OrD_7moLQesNVkaVqJOhrhaJtlmuQhprwU/edit#heading=h.fdkvwykf3mk5

7

2. Specifications and Analysis
In this section, we discuss the functional and non-functional requirements for our application.
We expand on specific technologies used for development, and the rationale behind why we
chose these technologies.

2.1 Functional Requirements

● Location recognition
○ The system shall recognize when the user’s device has moved location
○ The system shall recognize when the user’s device has arrived at or left an

activity location
○ The system shall recognize when the user is not where they are supposed to be

according to their scheduled items

● Dynamic Scheduling
○ The system shall make start/end time adjustments corresponding to their location
○ The system shall order activities by start time
○ The system shall display tasks and activities in the schedule
○ The system shall prioritize tasks that are due in the schedule
○ The system shall not have overlapping schedule activities
○ The system shall allow the user to add or delete an activity from their schedule
○ The system shall recognize the user’s time management strengths and

weaknesses

● Collaboration
○ The system shall allow an activity to be joinable while it is public
○ The system shall trigger activity and schedule updates for all users in an activity
○ The system shall delete a task for all users included when it is completed

● Notifications
○ The system shall notify the user when an activity has changed
○ The system shall notify the user when a member in an activity is late
○ The system shall notify the user when a different user completes a task for them
○ The system shall notify the user when they receive a direct message from

another user.

● Profile & Social Media
○ The system shall allow the user to create an activity for the public
○ The system shall allow the user to upload pictures
○ The system shall allow the user to post a status update
○ The system shall allow the user to reset their password
○ The system shall allow the user to change their information
○ The system shall allow a user to see another user’s profile page
○ The system shall allow a user to share their schedule
○ The system shall allow a user to be friends with another user

8

○ The system shall allow a user to see their friends and profile page
○ The system shall allow a user to filter and search for activities

● Recommendations
○ The system shall find activities for the user based on location and user interest
○ The system shall find activities for the user based on open space in their

schedule
○ The system shall find activities for a group of people based on schedule

availability and location
○ The system shall recommend future activities for the user based on their day so

far

● Tasks
○ The system shall allow a user to create a task
○ The system shall allow a user to label a task
○ The system shall allow a user to edit a task
○ The system shall allow a user to complete a task

● Activities
○ The system shall allow a user to create an activity
○ The system shall allow the user to make an activity public or private
○ The system shall allow the user to upload a picture for an activity
○ The system shall allow the user to mark an activity with a tag
○ The system shall allow the user to share an activity
○ The system shall allow the user to view their activities for work (meetings, phone

calls, etc.)

● Progress Logging
○ The system shall log each location change in the user’s day and display it in the

progress page
○ The system shall display charts to the user showing their time usage in different

categories
○ The system shall supply a brief summary of each user’s day in the past (recap)
○ The system shall update the user’s life score (Elo) after logging events

9

2.2 Non-Functional Requirements

● Performance
○ The application shall update data in realtime
○ The application shall be able to support 100,000 users
○ The application shall not buffer or lag while on strong internet connection
○ The application shall not log the user out of the app while it is installed

● Scalability
○ The application shall be able to scale to 1 million users
○ The application shall be operational on any Android device above API 14

● Testing
○ The application shall have a process to make testing the dynamic schedule

accurate and efficient
○ The application shall be connected to a continuous integration testing pipeline
○ The application shall be UI tested by a crawler at least 100 times

● Security
○ The application shall not allow users to have the same account email as each

other
○ The application shall use Firebase for secure authentication
○ The application shall have input sterilization methods for every user input

component

● Privacy
○ The application shall not allow a user’s friend to see their schedule if it has not

been shared
○ The application shall not track the user’s location without permission

10

2.3 Interface Requirements & Specifications

With the exponentially growing amount of applications available to users, it has never been
more difficult to create a product that stands out among the crowd. This is why it is vital for our
application to have an attractive user interface as well as a user experience that draws new
users to the application. Our goal is to provide the user with a system that encompasses many
parts of their life that they will enjoy experiencing. Instead of being a hassle to use, we want
GoMe users to be extremely satisfied by their time using the application. Including a strong
UI/UX into our application is easy to say, but measuring the interface success among a set of
users is another story. This is why we have come up with a set of requirements with matching fit
criterion to test the interface of the application.

● Look and Feel Requirements
○ The application shall have an attractive UI according to 80% of people
○ The application shall have both a light and dark mode feature
○ The application shall use colors that are not painful for the human eye to look at

for more than 30 minutes

● User Experience
○ The application shall be easy enough to use that a 25 year old can figure out all

of the functional requirements on their own
○ The application shall allow a user to personalize their profile
○ The application shall have a robust onboarding process that clearly explains the

app’s purpose and main features
○ The application shall use simple language so that someone under 18 can

understand
○ The application shall use appropriate symbols for buttons according to the

material design library

11

2.4 Technologies Used and Rationale

The main technologies used for our application are Android Studio for mobile development,
Firebase Cloud Firestore for the database, and Azure machine learning platform. In this section,
we touch on how we used these technologies and our reasoning behind these choices.

2.4.1 Mobile Development Framework: Android Studio

Choosing a development framework, we had to balance different factors in order to properly
make our decision. After reviewing our options, we ultimately decided between programming
native applications (using iOS Swift and Android Studio) or using a hybrid development
framework like React Native. The most important factor when making our decision was
application complexity.

Rationale - Application Complexity

As you read further, it will be clear that our main idea revolves around a wide set of complex
features that depend on very specific device capabilities. From prior experience using hybrid
development frameworks, it can sometimes be difficult to create high-complexity features
without taking advantage of the native development environment. For this reason, we decided
that using native development would be our best option. In the end, we also decided that we
likely did not have time to develop both a separate Android and iOS application. Since Android
offers all free development services and is easier to work with and test on a real device, we
chose to start with Android over iOS, hence making our mobile development framework of
choice Android Studio.

2.4.2 Machine Learning Framework

Our ML framework is based on the Azure machine learning platform, with an experiment that
helps us predict sleep patterns based on existing data. We decided to transition to this from
Keras because it had a much easier implementation, as well as being able to deploy to a web
API at a press of a button.

2.4.3 Database: Firebase Cloud Firestore

GoMe will be handling a lot of user data in order to get a good picture of how the user is
spending their time, what the user likes/dislikes, and what the user needs to do. It then needs to
feed this information back to the user and the ML algorithm in an efficient and meaningful way.
To do this we will be using a Google Firebase Database.

Google Firebase offers two types of real-time data storage– a real-time database named
Firebase RTDB (Realtime Database) and a new flagship database called Google Cloud
Firestore. According to the Google Firebase documentation, the RTDB is a low latency
database that is often used for applications that need to update in real-time and get information
quickly. We had originally thought that we would use the RTDB because of familiarity and its

12

ability to handle a large request load in real-time, however, reading further into Google Firestore
led us to change our minds. Google Firestore is an upgrade to Firebase RTDB according to
Google’s standards, as it is very similar to past platforms, but is also more technologically
advanced and will be supported more frequently in the future. Firestore also has a modern and
friendly user interface and offers a more intuitive data organization model compared to the
RTDB. For these reasons and others, we decided to use Firestore instead of the RTDB. We are
certain that Google Firestore is the best database service for GoMe for the following reasons
listed below:

Realtime Updates

As mentioned, all of Google’s database products update in realtime. This is a vital feature,
saving us time as developers and being able to rely on Google for fast data updating
performance. Using the realtime feature, we are able to make efficient read and write updates to
our database. This adds a great amount of positive user experience to the application.

Authentication

Another benefit of using Google Firebase is the secure authentication feature. Once again, this
saves us the cost of having to integrate this ourselves in a reliable way using another method. In
addition to that, Firebase’s authentication feature provides extensive capabilities that maximize
the user’s sign up or log in experience. Firebase allows many different sign in methods such as
email, phone number, username and more. Overall, Firebase provides the best option to know a
user’s identity.

Push Notifications

An important functionality needed for GoMe is the capability to send push notifications to
different user’s devices. With Google Firebase Cloud Messaging, we can easily integrate push
notifications to certain groups of people subscribed to a specific topic. On top of that, it’s also
free to use.

Integration

You may be noticing a pattern. We are choosing to stick with Google products because they all
integrate very nicely together. We have already made the decision to use Android Studio for
development and continuing to use products backed by Google helps us save both time and
stress. Google is a reliable technology company and gives us the capability to perform features
that could take too much time to develop in the duration of this course. Conveniently, directly
inside of Android Studio is the documentation to set up and use all of Firebase’s offered
features. In addition to this, Firebase includes a Test Lab that is already integrated as a feature
in Android Studio.

13

Security

Google explains that while RTDB allows you to set security rules, the read and write rules
require separate validation. This can become a tedious process and can be confusing for
beginners to get the hang of. On the other hand, Cloud Firestore offers simpler, non-cascading
security rules that automatically validate. Cloud Firestore also provides the option to implement
other security services like IAM (Identity and Access Management). Overall, both databases
provide strong security options, but Firestore provides a simpler, yet more advanced set of
security features, making our lives easier and our app more secure.

Analytics
Firebase offers a simple analytics platform to help us understand who is using our application
and how they are doing it.

Querying

While both RTDB and Cloud Firestore allow you to query, filter, and sort data, RTDB lacks in a
lot of ways, while Cloud Firestore excels in providing intuitive query statements that give you
plenty of options to get data no matter how you organize it. RTDB stores data in a nicely
organized JSON tree, but a single query will return the entire structure, no matter how deep.
Cloud Firestore organizes data in collections and documents, comparable to a folder with
documents inside of it. This allows you to perform shallow queries and filter by a single attribute
or property. Overall, Cloud Firestore allows us to be more creative with how we organize data,
knowing that we will be able to easily access it in any situation.

Scalability

Google documents the RTDB as having good scalability options, but at some point it starts to
get complicated. Unfortunately, once you reach 100,000 simultaneous connections, RTDB will
require database sharding, which means you need to use a second database to keep scaling
up. This might not be an issue for us in this class, since we probably will not reach over 100,000
connections at the same time, but thinking long-term, the RTDB does not provide a great
scaling solution for large applications. On the flip side, Cloud Firestore offers automatic scaling
with a limit of 1 million concurrent connections. Google also plans to keep increasing this in the
future. Because of this, Firestore offers a much more scalable database service for a large
application.

As listed above, Google Cloud Firestore offers great features that saves us the tedious hassle of
implementing ourselves. This includes authentication, general data security, and scalability, all
the features that are vital to the long term success of our application. Although we originally
planned to build the app around Firebase RTDB, we decided that Cloud Firestore provided a
more advanced, updated, and overall better service for our data.

14

3. Revised Design
As expected, the design of our application has changed a lot from Spring semester to Fall
semester. While things were changing in our design, we had to come up with a lot of creative
solutions to accomplish different functionalities throughout the application. This section contains
all of the major design patterns, data models, services and components that allowed us to
create GoMe.

3.1 System Components

Below is a detailed description of all the components and services within our application and
what contributions they bring to create the different functionalities found within GoMe. These
different components were what allowed us to bring our idea to life.

3.1.1 Component Diagram

Figure 2: Component Diagram

Above is a high-level component diagram of how our mobile application interacts with different
components. As seen, the center of the system is the mobile application, but it communicates
with several APIs as well as a simple server and Firebase Database in order to maximize
functionality. Expanding on the listed APIs, the application uses Google Maps for location
tracking and verification, Google Places to help us link activities to locations, Facebook for
authentication and social activities, Google Calendar for syncing calendar events, and Fitbit for
sleep data.

15

3.1.2 Models

In order to provide all of the required functionality, GoMe needs to possess various different
objects that play a specific role inside the application. In this section, we will run through all of
the important objects that hold the information displayed in the apps interface and held in the
Firebase database.

Schedule

Arguably the most important feature of our application is the dynamic schedule that is generated
for the user everyday. In order to store all of the data for this schedule, we created a Schedule
object. This object holds many data lists, for example, the user’s schedule items (a list of
Schedule Item objects) that is displayed on the schedule fragment screen. It also holds an item
called “Schedule Score” which is a simple breakdown of how the user has spent their time
during the day. This score is used in the schedule assessment service explained later on. This
object also contains the date of the schedule so we can easily query the user’s schedule by
date. Once a day has been passed, we designed a method to crunch down all of the schedule’s
data into a small daily recap. This allows us to save storage space and provide the user with a
short recap about what they spent their time on during that day.

Schedule Item

The user’s schedule object is extremely important, but it serves no purpose without being
populated by scheduled events. This is why we designed the polymorphic object Schedule Item.
These objects contain a lot of useful data that allows us to show the user details about the
things that they will be doing throughout the day. It also contains a place object so we can tell
when the user has left or arrived at that schedule item. With Schedule Items, we can easily
translate any information into a new object to put into the user’s schedule.

Activity

An Activity is a very important application object that serves the purpose of a social event.
Similar to something that can be seen in popular social media systems, a public Activity can be
created or joined by any user and allows an unlimited amount of users to be involved. You can
easily invite users to a new activity while it is being created. Activities allow for an easy method
of user collaboration in life events which contributes to the applications several collaborative,
multi-user features.

User

Every user on the application has a data model created for them. Inside of this object is all of
the data that the user sets in the registration and on-boarding process (user’s name, work
address, home address, expected work and sleep times, interests and others). All of this data
gives us an understanding of the user so we can build them a schedule template and a profile
page. The user object also contains location tracking data for the user (places they have been),
the user’s schedule objects, and all of the activities/tasks that the user is involved in. The User

16

object is present and heavily utilized in nearly every feature across the app. GoMe is centered
around improving the person using the app, so it makes sense that the User object is important
in every aspect across the application’s various functionalities.

Task

A Task is an object that represents something a user must do, just like a normal task in life. A
Task can be created by any user and gives the option to also invite other users to take part in
the task with them. The Task object has a title, short description, estimated duration, users
included, and other optional attributes. While designing Tasks, we came up with a couple
different ways that we could classify the items that users need to accomplish during their day.
First, not every task has a set start and end time, but some do. Similarly, some required tasks
possess a location, while most do not. Lastly, not every Task in a person’s life has a deadline
and as a result is not a huge priority if they have other activities going on. Taking these
considerations into account, we decided to divide Tasks into two primary child objects. These
are Dated Task and Checklist Task. The former, Dated Task, is an object that has both a set
time and location. For example, a Dated Task could be a meeting for coffee with one of your
co-workers. This Task is something you need to do, but when it is over the application will do
the work of checking it off as complete. Dated Tasks are easily displayed in a user’s schedule
since they provide a set start and end time. The latter, Checklist Tasks, are a more traditional
approach to a checklist item, lacking a specific time and place, but allowing a user to set a
deadline if they see fit.

For example, a Checklist Task could be completing your homework assignment that is due at
midnight. This is slightly more complicated to schedule since it lacks a time, but we have
created methods to properly put Checklist Tasks into a user’s schedule using a couple
background services. Once you have completed your Checklist Task and don’t need to think
about it anymore, simply check it off of your list and the task will be deleted for all users
involved.

Priority

A Priority is an object that serves as an easy way to recognize what the user should do with
their available time. We developed Priorities with the purpose of storing what the user has either
been lacking or what they must spend time on due to deadlines, and routing that directly into
prime consideration while building the user’s schedule. The Priority object holds attributes of
importance value, an optional reference id linking to a task or activity and an estimated duration
of the time they should spend doing this priority. As an example of how Priorities are used in
GoMe, consider the situation where you have an important feature to program for work by the
end of the day. You probably have a busy day as is, but it is essential that you spend enough
time today to finish the feature. You create the task in GoMe and it generates a matching
Priority object. This Priority has a high importance value and therefore will take precedence over
other activities that could be put on your schedule. Having Priority objects ensures that you will
spend your time on the most important tasks throughout the day.

17

Place

The Place objects within our application serve a very important purpose. They tie a real world
place to our user’s location, activities, and schedule items within the app. This allows us to
understand where and when the user will be going throughout the day. The objects contain
things like addresses and latitude/longitude which we can use as a cross reference with their
actual location. When a user goes through our onboarding process, they give us information
such as their home and work addresses. We then assume that they will most often be sleeping
at their home and working at their work address. In addition, we ask that the users enter the
location of their events over the course of the day. From there, we can build out a good picture
of where the user intends to be throughout the day. Using that information, we look at their
current location to see if the user is where they should be in relation to their schedule each day,
and react accordingly. For example, if a user gets to work on time, it may increase their Elo
score (explained below), but if they are late to work, it may decrease their Elo score and give
them some tips on how they could adjust their schedule to get there on time in the future.

Elo

We wanted to implement a way the user could recognize their personal progress for each of the
major subjects (sleep, work, etc.) - what we created is our Elo object. Elo is a system of ranking
typically used in video games today to measure a user’s ability/skills against their peers. What
we have created is an offset version of this. Our equation scores the user in each of the
subjects on a scale from 0 to 100, 0 being rock-bottom and 100 being perfect. Therefore, a user
with a score of 80 in the sleep subject is considered to be strongly on-top of their sleep schedule
and sleep wellness. The user is also able to see what actions are increasing/decreasing their
scores to further understand their personal progress.

3.1.3 Services

Creating a complex application requires work from many different software components inside
the application. Here, we will outline the services that were designed to handle specific
responsibilities in order to run our application’s various features.

Device Tracker (Tracking Service)

The tracking service is used to monitor user location and make calls to the location verification
service. It works via a location listener which recognizes when the user location has changed.
When it does so, it starts the “on location changed” function and passes it the address that the
user has moved to. Then, using the address, we make a call to Google Maps API in order to
gain more information about the address, such as latitude and longitude. After that, we parse
the information returned from the API call, and log it under the user profile in our database.
Lastly, this service makes a call to the location verification service (described below) which will
use the information that it acquired. For example, if the user moves from their apartment to
campus, the location listener will see the location change and make a Google Maps API call on

18

the new location. Then we will parse and log the information returned and pass it off to the
location verification service to do the rest.

Location Verifier (Location Verification Service)

The location verification service is called by the tracking service as mentioned above. When it is
called, this service checks the user’s current location versus the location of their current or next
event and handles it accordingly.

Some of the cases include:
● If the new location is their next event, we note that the user has arrived at the event.
● If the new location is their current event and they have already arrived, we recognize this

as a margin for error in the location tracking.
● If the new location is not their current event, but they have not arrived yet, we check to

see how far the user is from the event. If the user is going to miss the entire event, we
can cancel the event. If the user is going to be late to the event, we check to see how
late they will be (using travel time) and push the event back in their schedule.

● If the new location is not their current event, but they had already arrived at their current
event, we note that the user has left the event.

Event Handler (Event Service)

The event service stores a list of the user’s events for the day which changes dynamically as
the user makes adjustments to that schedule throughout the day. It takes the user schedule and
always keeps track of the user’s current schedule event, as well as their next upcoming
schedule event. Other services within the app make calls to the event service in order to make
changes to the current and upcoming events, then update those events in the database so that
they can be reflected in the user’s schedule. For example, when a user arrives to an event, the
location verification service will call the event service in order to record the arrival time to the
event and reflect it in the database. Another example would be if a user is late to an event, the
location verification service will make a call to the event service in order to move the start time of
the event. Once it is changed to a new time that the user will be able to attend, it will reflect that
in the database and user’s schedule.

Schedule Assessment

In order for us to get an understanding of how the user has performed throughout the day, we
designed a schedule assessment process. This process takes in the user’s schedule for the last
day as a parameter. The service then takes a look at how the user has spent their time since
they last went to bed, in each of the 4 categories of sleep, work, wellness and social. Once we
know how the user has spent their time, we take a look at how the user plans to spend their
time the rest of the day. By looking at how the user has spent their time and plans to spend their
time, we are able to assess how the user has been performing in those 4 categories. From that
assessment, we can generate priorities for the user, which are scheduled into the user’s day to
make up for poor performance.

19

Schedule Builder

The schedule builder creates and updates the user’s schedules throughout the day. It takes in
all of the user’s activities, tasks and priorities and organizes them into a schedule that the user
can follow throughout the day.

Messaging Service

This service allows the app to call a Firebase function, a simple web function that allows
messages to be sent to different topics, which is the basis of how our app will update other
users on changes in their own schedule based on changes in other’s schedule. This will be the
main way for schedule changes to be propagated to all event participants.

Priority Selector (0/1 Knapsack)

The Priority Selection Service is a Java class that takes in a list of priorities for a user and a
number representing the duration of a free time schedule item. Taking into account these
parameters, the service runs a 0/1 Knapsack type algorithm in order to maximize the number of
priorities that we can fit into a block of free time. The Priority Scheduler then interacts with the
Priority Scheduler to populate the new items into the user’s daily activities. The priorities chosen
by the service are then marked as handled and will no longer be considered by a future instance
of the algorithm. This process plays a vital role in our dynamic scheduling feature, allowing the
app to determine how the user should utilize their free time and send that directly to the Priority
Scheduler for immediate placement.

Priority Scheduler

The Priority Scheduling Service is a Java class that accepts a user’s schedule object and a list
of priorities that need to be inserted into the user’s schedule. This is done by taking the priorities
and translating them into schedule items that can be placed in the user’s schedule. Based on
the importance value attribute of the priority, the new schedule item either replaces a part of a
block of free time (determined by the Priority Selector) or is force scheduled somewhere into the
user’s list of schedule items (usually tasks with a deadline coming up soon). This process plays
an extremely important role in our dynamic scheduling feature, allowing the user to input tasks
and see them show up on their schedule before they are due.

20

3.2 System Design

Designing the primary functionalities of the application took plenty of thought, hours of
whiteboarding, and even more time for final implementation. Fortunately, our team felt that with
a strong design going into implementation, we would be saving ourselves from later hassle
caused by a poor initial strategy. In the following paragraphs, we outline a brief design
explanation for each of our major functional features.

3.2.1 Location Tracking and Verification

Our application relies heavily on monitoring the location of the user for the dynamic portion of
the schedule. Location tracking works via a location listener which recognizes when the user
location has changed. When it does so, it starts a location change function and passes it the
address that the user has just moved to. Then, using the address, we make a call to the Google
Maps API in order to gain more information about the address, such as latitude and longitude.
After that, we parse the information returned from the API call and log it under the user’s profile
in our database. Lastly, this service makes a call to the location verification service which uses
the information that was acquired.

The location verifier then checks the user’s current location (that was passed to it by the location
tracker) versus the location of their current or next event. As a part of this process we use a
travel time algorithm that finds how long it will take for the user to get from their current location
to their desired location. Next, based on a series of possible cases, the location verifier makes
calls to the event service that will alter events and make changes to the users schedule as
necessary. These changes all take place behind the scenes with very minimal input from the
user.

Figure 3: Location Tracking and Verification Diagram

21

3.2.2 External API Data Collection

For our application to function, we need a number of data points to assist our scheduling
function. The APIs we are using (and what we are using them for) are as follows:

● Fitbit to obtain user sleep data
● Google Places to obtain information about addresses the user interacts with
● Google Maps to obtain location information on the user
● Google Calendar to see already existing schedule items/obligations/tasks
● Facebook Events to see what events are going on in the user’s area

When implementing these APIs we used the adapter design pattern. Utilizing this pattern
ensured that if an API changed how it works functionally, all we need to do is change the
adapter class so that our code would maintain functionality throughout the application. By
utilizing this pattern, coupling between our code and the external APIs is decreased, thus
making our code easier to manage.

22

3.2.3 Data Design

Firebase Cloud Firestore provides a powerful, yet intuitive and unique way to structure data.
Information is organized into 3 main structures. These are (1) collections, which are the highest
level structure. Collections are the tables of Firestore, each of which contains multiple
documents. Next, there are (2) documents, which are specific, uniquely identified objects
holding information. Documents can easily be compared to a sheet of paper or files that would
be stored in a folder. Lastly, Firestore includes (3) data, which is simply the attributes describing
the document. The following diagram shows how we have chosen to structure our large set of
data according to Cloud Firestore’s organization model.

Figure 4: Database Hierarchy

23

3.2.4 Scheduling Algorithm

In order to schedule user’s activities for them dynamically throughout the day, we needed to
design an algorithm that could schedule activities efficiently and reflect the most important items
for user. The algorithm also needed to understand which activities were most important for the
user to do at any given time during the day and then place them into the user’s schedule in a
way for the user that is feasible for them to accomplish. In order to do that we came up with the
following design for the GoMe scheduling algorithm:

Figure 5: Data Flow Chart

As shown in the above diagram, the process begins with a certain trigger telling the application
to update the user’s schedule. This can be anything from arriving late to an activity, deleting or
adding an activity, or logging into the app for the first time. After we receive signal that an
update is needed, the Schedule Assessment Service begins the work on figuring out the user’s
most glaring needs. This typically analyzes how the user has spent their time and will generate
priorities based on the area that the user is lacking. For example, if you only sleep for 4 hours
one night, the app will ensure that sleeping is a high priority. Once accurate priorities are in
place, the Priority Selection Service is created and selects priority items that can fit into the
user’s free time. If a priority reflects a task that is due tonight (priority level 10), a block of time is
force scheduled for the user to ensure that they have time to finish the task. Finally, once all
schedule items are in order, the user can view an updated list of activities for their day.

3.2.5 User Collaboration Design

A large part of the application functionality is allowing users to not only have an effect on their
life, but also on the life of other users. To do this, we designed a feature that takes an activity
with multiple users, and makes changes to the activity's start time if one of the included users is
late to an activity, or will miss it altogether. This is an extremely rare functionality that allows

24

anything you do to have an effect on someone else’s time usage. For example, if you are
participating in an activity with another user, your personal actions can cause a time change in
the mutual activity. This change can have a cascading effect on all of the users included,
ultimately changing the way the users will spend their time the rest of the day. This is briefly
illustrated at a high level in diagram below. Here, we see one user’s action triggering an impact
on another user’s following activities, very similar to a domino effect.

Figure 6: Multiple Plane Effect Diagram

Vital to this functionality, the location verification service (mentioned above) recognizes when a
user is too far away from an event to arrive on time. Then, it calculates the travel time it will take
for the user to arrive at that event and reschedules the event to a later time that the user will be
able to make. If that event has multiple users, it will also reflect the time that the event has been
rescheduled to in their calendars and notify them that it was rescheduled to that time because
another user in that activity was going to be late. This is further illustrated in the diagram below.

Figure 7: User Collaboration Diagram

25

3.2.6 Machine Learning Design

Designing the Machine Learning module was relatively easy by using Azure’s intuitive drag and
drop approach. The following graphic shows the basic layout and data flow of the two models,
one for predicting sleep start time (left) & end time (right) based on the day of the week.

Figure 8: ML Data Flow

The model is initially trained after ~2 weeks of sleeping data, after which new data is fed in to
retrain the model. These models are based on Azure’s implementation of a neural network, with
100 hidden nodes, and a learning rate of 0.005. Each day, the day of the week is fed into the
model and from that, the predicted start and end time is returned. Azure allows us to deploy
these models as retraining and predictive endpoints, which can be called with the day of the
week.

26

3.2.7 User Interface Design

Designing a professional level UI in Android Studio is not always convenient, but providing the
user with a top-notch user experience was a high priority for the application. In order to create a
professional looking product we went through a few different rounds of user interface research,
balancing different references as ideas, until ultimately defining the look that we wanted for our
application. This required coming up with a robust, bright color scheme and organizing the best
way to layout our features. We designed an application interface organized into 5 main tabs,
with a home tab fragment including 3 separate pages. This design allows for the user to easily
navigate the application, but also looks clean and organized. The diagram below outlines the
different application fragments and the major components contained inside.

Figure 9: UI Pages

27

4. Implementation
Although we accomplished a small amount of our implementation goals during the first project
semester, we left the most important features to be created in the second semester. To start, we
devised a simple implementation protocol to assist us in staying organized and communicating
well. We also needed to prioritize our main features to decide what was most important to work
on. Although we had to deal with goal and design changes periodically, we still built a near
professional-quality application.

4.1 Software Implementation Plan

Below is a simple process diagram outlining our implementation protocol process throughout
our time working on this project. We started by gathering requirements mainly from internal
team brainstorming. After knowing our requirements, we designed some simple screenshots to
help us get a clear idea on what we needed to build from a user interface perspective. Next, we
started the process of designing strategies to build specific features. After completion, the
design was then explained to the full team. If anyone has a problem with the design or
alternative ideas, they voiced their opinion and sent the designer back to the drawing board with
new ideas. If the team approves the feature design, the designer continues to implement the
feature. Following this, a quick code review is conducted. If this is approved by all reviewers, the
feature is then merged and automatically integration tested through our Jenkins server. If
something goes wrong, the team is notified by Jenkins and the code is manually reverted.

Figure 10: Implementation Plan

28

4.2 Major Features & Implementation Strategy

During the very first days working on GoMe, we had nearly unlimited ideas and no clear
direction. We had determined that we wanted to create a productivity application that beat out
existing methods, but suffered a difficult process of narrowing down our ideas into something
feasible and effective. Ultimately, we decided to go for making a productivity centered
social-media application. The main selling point was the capability of building a dynamic
schedule. To build around that, we created common productivity features such as task
management, time analytics and project tracking, but also includes social features like
collaboration, push notifications and activity recommendations.

4.2.1 Dynamic Schedule

The schedule resolves uncertainty a user may have about what they should do throughout the
day. The data provided comes from the individual’s data profile as well as information from what
is going on in their area (other users activity, traffic, resources available to users, etc.) to ensure
they are as efficient as possible with their time. If something happens that impacts the user’s
ideal schedule, their schedule will update. For example, if the application notices that the user
received less sleep than usual the previous night, it will suggest going to bed earlier on a future
night in order to compensate for this. The user’s schedule will also change based on how the
user performed throughout the day. This schedule will be created by tracking the user’s location
and input where they’ve been or what they’ve been doing. It will display to the user what they
actually did​ ​and adjust their future schedule as needed. In order to accomplish this dynamic
schedule, we used our scheduling algorithm detailed in section 3.2.4.

4.2.2 Collaborative Schedule

Collaboration plays a huge role in productivity and well being, so it only made sense for us to
incorporate collaborative features within GoMe. Within our application, every user has the
potential to impact another person's schedule based on certain events that occur throughout the
day. For example, if there are several users with an activity scheduled together and one of the
people is running late to the activity, the app will recognize this. After it is recognized that
someone is running late, the application then allows the user who created the activity to push
the activity’s start time back to the estimated arrival time of the person arriving late. This process
of notifying everyone involved and rescheduling an event would usually take several text
messages or phone calls and a lot of headaches. With GoMe, it is seamless.

Another feature within GoMe that allows users to collaborate is our task creation process. When
a user is creating a task, they are given the option to add other people to the task. Doing so will
add that task to both of the user’s schedules so they can work on it together and see how it is
progressing. Once one of the people working on the task is able to finish it, the other people are
notified and it is removed from their schedule.

29

4.2.3 Social Media Features

GoMe not only creates a dynamic schedule for you, but it also has a social media platform built
around that schedule. This platform strives to allow you to collaborate with your friends, watch
each other succeed, and improve yourself. To do this, we allow users to send friend requests to
one another. When the other accepts that friend request, they are now “GoMe friends.” Once
users are friends on the application, they are able to see events that the other person has
posted and schedule tasks together. Beyond that, the application is able to look at both of the
user’s schedules and find activities that they both could do together during times that they are
free. Once the users decide on an activity that they both want to do together, the app adds it to
their schedules for them. Allowing users to easily find fun and new things to do together will lead
to more people getting out and doing things with the people they like to spend time with.
Another social media feature we have implemented in this application is allowing the users to
create their own profile, which allows them to personalize how they are seen by others on the
application.

4.2.4 Analytics, Progress Tracking and Recap

To allow users to continue improving themselves and their daily routine, it is important they
understand how they’re performing in the different areas of their life. Within GoMe, users are
able to stay updated on their performance via robust analytics and progress tracking in 4
different categories: sleep, work, social, and wellness. As described in Section 3.1.2, there is an
Elo score for each user in these categories. The goal of “scoring” a user is to show them how
they are spending their time, and what areas of their life that they could improve upon. A user
will be notified of impending raises or drops in their Elo score. Another easy way the app
demonstrates this information to the user is by using an Android graphing library to visually
display the user’s scores. The user’s Progress Page displays a recap for each category as well,
providing the user with a quick real time analysis of how they have been performing during the
current day. With these functions in the app, a user can see their performance in long and short
term time periods, making it easy to decide on any improvements that can be made to their
routine.

30

4.2.5 Push Notifications

Notifications will be sent to the user whenever something important and/or urgent comes up.
Notifications can be turned on and off as desired. The type of notifications consist of the
following:

● Friend requests from another user
● Activity updates, telling the event owner that a user included in the activity will be late or

miss the event entirely
● Activity invites from another user
● Task completion by another user (collaborative features)
● If the user is late to an activity by an hour, ask if they are still going to noted activity. If

not, update their schedule

To facilitate the pushing of notifications to those who are in the same activity, we implemented a
Firebase Function API. This is a simple node express API that allows notifications to be sent to
users attending a specific event. When a user joins an event, they automatically get subscribed
to notifications from that event. As an example of how this is used, consider the case that
another user is going to be late to that event. In this case, a push notification will be generated
by that user, and then pushed to all other participants.

4.2.6 Recommendations

GoMe recognizes user activity and makes recommendations based on patterns and user
interests. The “Events” page recommends activities in your area that align with the interests you
selected during the onboarding process. These interests are customizable on your profile page
as well. As public activities are created by other users, they will appear on your page with the
option to join the activity, which will add it to your schedule and allow you to receive its
notifications. GoMe can also recommend activities for you and a friend to attend by looking at
each user’s schedule and finding open free time where both users are available. With remaining
free time in your schedule, the app analyzes your scores and suggests what else you should be
doing during your free time in order to improve your scores and accomplish tasks.

31

5. Testing
As with any software system, testing is the greatest way to verify that your software is of
professional quality. Being slightly short on time, we did not accomplish 100% complete test
coverage of GoMe, although we believe that we came close. Instead of our original plan,
leaning heavily on unit testing with fake user data, we decided to go a different route. Here, we
outline our testing methods by using Jenkins continuous integration as well as our own
personally built simulation environment.

5.1 Functional Testing

Throughout the development process, we utilized an agile-driven design while demonstrating
new features to our advisors/clients as they are developed and tested. Each iteration addressed
different goals and requirements that are listed in this document.

When a new functionality was developed and added to the code repository, it contained detailed
scenarios on how and when the new feature is used. These generated scenarios are used
frequently throughout testing. For testing, we consistently used the tried-and-true
‘Given-When-Then’ scenario model. An example of a possible scenario could be:

Given​ an authenticated user on the Events page
When​ user selects an event displayed to them
Then ​the event description and information is displayed for the user

This structured scenario process allowed us to brainstorm and user test possible scenarios for a
new feature with ease. Before each push of a new feature, developers would consider scenarios
in this model to test and debug on their local machine.

Below is a table of our carried out test plans for many functional requirements:

Table 1: Testing Plans for Functional Requirements

Functional Requirement Test Plan Results

System shall create a
dynamic schedule for the
user to follow.

Generated a schedule for the
user and verified that the
ideal schedule is correct
based on events (like work
school and sleep).

The system generated a
sensible schedule for the
user based on their previous
habits.

The user shall be able to
easily add events to their
schedule.

Tested saving an event
where free time is available
and verify that it appears in
the user’s schedule for the
day.

The saved event appears in
the user’s schedule for the
day which the event was
created for.

32

The user shall be able to
share their schedule/events
with friends inside the
application.

Tested share functionality
using an unchangeable
schedule object with a user’s
friend.

The user’s friend was able to
view the user’s schedule and
shared events using the
share feature.

The user shall be able to
easily make changes to their
daily schedule.

Tested the ‘edit schedule’
function allowing the user to
adjust details about the
events on their schedule.

The schedule reflected the
updated event details (like
timespan) and adjust the
user’s level of time allocation
and free time around the
scheduled event.

The user shall be able to see
their profile and their friends
profiles easily.

Tested navigation of the
application for such cases.

Clicked on a profile name or
picture whom is not the
current user and were linked
to the intended user’s profile
page.

The user shall be able to see
changes to their ‘Elo’
score(s).

Tested Elo change due to
user action as well as visual
displaying of changed scores.

The user’s Elo score was
changed due to poor sleep.
This change was reflected on
the Go page where the user
can see his/her scores.

Integration Testing - Continuous Integration

Continuous Integration (CI) is a huge topic in the world of software engineering today, so we
wanted to implement it into our project. We decided to use Jenkins for our integration testing
needs. We were able to download, configure, and run a Jenkins instance locally on a team
members desktop. Using plugins available for Jenkins, the job pulls the current master branch
code from the project’s repository, performs a number of tasks on the code, performs a
debugged installation onto an emulated Android device, and then emails a team member the
status of the build (success or failure) along with the build output. The types of tasks (78 total)
that are completed during the build include but are not limited to:

● Debugging the Manifest, config files, resources, Google services, etc.
● Compiling the code base
● Debugging Android .apk installation

The job is configured to run once daily to monitor and maintain the health of the repository. It
has been proven that CI makes developer’s lives easier by integrating building and testing
together, helps write higher quality software by checking on the health of the code frequently,
and saves time in the development lifecycle by catching bugs they may or may not have gotten
through without the integration testing.

33

Simulation Testing

Our simulation testing creates a fake schedule for as many users and days as we want. For
each day generated, the simulation creates fake arrival times, deletions, and other objects or
actions in the user’s schedule and then runs the simulated day using that schedule to see how
our application reacts to scenarios. This allows us to test infinite scenarios on our application’s
scheduling algorithm, Elo creation process, user time analysis, trend correction, and any other
major feature of our application. This is extremely helpful because we now know that our
application works in thousands of scenarios, and it would have been impossible to do this by
manually testing this aspect of GoMe.

5.2 Non-Functional Testing

Our original plan was to hit all the major non-functional testing areas (performance, security,
usability, and compatibility) mainly using the Firebase Test Lab. However, as discussed above,
we decided to focus more on the integration testing side of things.

Performance Testing/Compatibility Testing

Because of our focus on integration testing, we moved away from the Firebase Test Lab to
Jenkins, but still hold onto our wishes to do performance and compatibility testing in the future.
We strongly believe that continuous integration had a longer lasting effect on our project
lifecycle.

Security Testing

With this being a completely software project, we hold a lot of reliability in the services we are
using. Much of our security testing was making sure our database configurations were set
correctly, as well as ensuring each user only had access to their own information. We made
sure to strongly test that last point once we built features that allowed users to see other users
and their created events.

Usability Testing

Because our only actor will be the general population, we asked some of our colleagues and
friends to quickly use GoMe and tell us what they thought we could improve on design wise
(disclaimer: we did not allow anyone to create profiles within the application, as we wanted to
avoid data recording for anyone other than us). We were able to do this usability testing earlier
in the second semester when our application design was still raw. Much of the information we
received was based on app navigation. After listening to feedback, we moved some of the page
fragments around to make navigation of GoMe easier and more intuitive. Major UI upgrades
were also made during the second semester to beautify the application based on the results of
usability testing.

34

6. Closing Material
In conclusion, we have completely designed and developed a mobile application that seeks to
improve the user’s life by creating a dynamic schedule and providing feedback. Initially, we had
many ideas and features that we hoped to implement for our application, but realized we
needed to narrow down the scope and focus on the major aspects that could separate us from
existing productivity systems. By combining the benefits of existing applications with additional
functionality like collaborative tasks, activity recommendations, dynamic updates, and social
media capabilities, we believe we have successfully fulfilled the vision of the GoMe application.
Going forward, we are excited to explore how GoMe can grow and become a staple in a user’s
real life.

35

7. References
“Calendar Survey: 70% of Adults Rely on Digital Calendars.” ​ECAL​, 23 May 2018,

ecal.com/70-percent-of-adults-rely-on-digital-calendar/.

“Choose a database: Cloud Firestore or Realtime Database | Firebase,” ​Google​. [Online].
Available: https://firebase.google.com/docs/firestore/rtdb-vs-firestore. [Accessed:
26-Mar-2019].

Kashyap, Vartika. “Top 19 Online To-Do List Apps To Stay Ahead in 2019.” ​ProofHub​, 27 Nov.
 2019, ​www.proofhub.com/articles/to-do-list-apps​.

http://www.proofhub.com/articles/to-do-list-apps

36

Appendix I: Operation Manual
Refer to this section to get started and learn more about what you can do with GoMe.

1. Getting started

37

38

2. Signing In

Logging in to GoMe is extremely simple! All that
is required is for you to enter your email and
password, then tap button ​1​. Note that this will
only work if you have created an account before
on GoMe. If you have not created an account
before, press button ​4​ to continue to the
registration page. If you happen to forget your
password, simply tap button ​3​ to receive an
email regarding password reset. Lastly, GoMe
also provides the option to sign in with your
Facebook account. This can be performed by
pressing button ​2​.

3. Scheduling Activities With Other Users

GoMe includes a
unique feature of
allowing you to
quickly schedule
an event with
another user. This
is so simple that it
can be done in the
push of a button!
To start, navigate
to another user’s
profile page. From
there, click the
calendar icon
button ​1​. This will
automatically find
your availability
and match it to
events. You will shortly see a dialog with a list of events that you can scroll through
horizontally. When you decide which activity you want to schedule, simply tap the blue
button (​2​) and you will be added to the activity, while an invite will be sent to your friend.

39

4. Creating an Activity

Creating an activity is a
quick yet robust process
allowing any user to
create a detailed Activity.
Doing this is very simple
and takes about 1
minute. To start, tap on
the image placeholder ​1
to upload an image for
your event. Next, give
your activity a name by
typing into input ​2​. Third,
provide a start and end
time as well as a location
by using the provided
time and place pickers in
section ​3​. Moving
forward, type out a short description of your event in input ​4​. Next, select any relevant
tags from the options in section ​5​. Continuing, select any users that you want to invite to
your event in section ​6​. Any user selected will receive a notification once the event is
created. Almost finishing, set the permission value of your activity by selecting an option
in section ​7​. Selecting ‘public’ will allow any user to see your event. Selecting ‘private’
will only allow you to see the event. Lastly, selecting ‘Share with friends’ will only let
users that you are friends with view your activity. Finally, you are done! Tap the create
button (​8​) to finish officially create your new event.

5. Creating a Task

Creating a task is an
easy process
allowing any user to
create a detailed
task. Doing this is
very simple and takes
about 1 minute. To
begin, give you task a
name in input ​1​.
Following that, write a
short description
about your task in

40

input ​2​. Next, choose a label in section ​3​. This label is intended to categorize your tasks.
For example, if the tasks relates to something at work, label the task as ‘Work’. Next,
adjust the slider in section ​4​ to give an estimate of how long the task will take. This is
important, as it helps the app determine how much time to schedule to allow you to
complete your task. Moving forward, switch on the date option in section ​5​. If you want to
give your task a start time and location. This is optional. In section ​6​, turn the switch on
to give your task a deadline. This is also optional. In section ​7​, select any friends that
you want to invite to work on the task with you. Once created, invites will be sent to all
users selected. Finally, press the create button (​8​) to officially create your new task!

6. Add Friends

Adding friends is an easy,
minimal-step process. From
your profile page, click on
the textbox showing the
amount of friends you have
(​1​). You will now be directed
to a new screen showing all
of the users that you can
add as a friend. Simply click
the blue button (​2​) next to
the user that you want to
add as a friend to send
them a request. When they
choose to accept, you will
then be friends.

7. Completing Tasks

Completing tasks may be difficult in real life, but
in GoMe it is extremely easy! From the task page
under the checkmark tab, you can view any
tasks that you have created in an organized list.
If you don’t see any tasks, try creating one first
(see section 5). When you have finished a task
and want to check it off on GoMe, simply tap the
checkmark button (​1​) on the completed task and
watch it disappear forever.

41

8. Viewing Categorized Tasks

GoMe provides a
convenient system of
labeling tasks, allowing you
to see your tasks according
to their label. As a useful
example, imagine that you
wanted to see all of the
meetings and tasks that
were on your plate for your
day at work? This is
possible with GoMe, and it’s
very simple. First, navigate
to your schedule under the
home tab. Find your event
today and tap on it (​1​).
Once that is done, that’s it,
you will be swiftly redirected
to a page matching your event that lists all of the tasks that you need to complete.

9. Using the Location Picker

Across the app, you will have the
option to choose a location for
different tasks and activities. This
requires using Google’s location
picker. This widget is extremely
helpful and easy to use. Getting
started, search for the location that
you want in input ​1​, or select a
commonly chosen place in section ​3​.
You can also select your current
location with the pinpoint button (​4​).
Once you have selected your location
of choice, click the button in section ​2
to complete the location pick.

42

10. Viewing Notifications

GoMe includes an
extensive feature that
notifies you about different
events. To view these
notifications, first navigate
to the schedule page
under the home tab. From
here, click on the
notification icon button in
the top right corner (​1​).
This will automatically
redirect you to the
notification list where you
can view and interact with
your notifications.

11. Viewing Your Daily

Activity

GoMe keeps track of your daily
activities and scores you based on
punctuality and time spent. This is
displayed to the user on the
progress page under the home tab.
On this page, you can view your
Elo score and recent changes in
the top right (​1​). Below your picture
in section ​2​, you can see a list of
your daily activity. This outlines
when you leave places, when you
arrive at places and other events.
Finally, in section ​3​ you can view
how you are doing in the categories
of sleep, work, social, and
wellness.

43

12. Interacting With Your Schedule
In case you didn’t already know, GoMe includes the powerful feature of a dynamic
schedule (!). Although this is an operation manual, the best benefit of a dynamic
schedule is that you don’t need to know how to use it. Instead, all the work is done for
you! The schedule works by taking into account when you usually sleep and work, your
scheduled activities for the day and also gives you live recommendations to help you
make balanced time decisions. If this still
doesn’t make sense, open the app and tap
on the home tab. This will reveal a list of
different items that are on your calendar
for the day. There are many different types
of cards that can show up in your schedule
list. They are as follows…

Free Time
A Free Time card represents time that you
don’t have any responsibilities. You can’t
really interact with your free, but instead,
make sure to take advantage of it. Free
Time will likely show in your
schedule more than once per
day, depending on how busy you
are.

Sleep
A Sleep card shows up on your
schedule when the app thinks
that you should be sleeping. This
is mostly determined by your
input during the onboarding
process, but over time GoMe will
try to reflect more accurate sleep
times as you go throughout your
life. You will typically see 2 sleep
cards in your schedule, the first
representing you morning sleep
after midnight, and the second
holding a place for you night
sleep prior to midnight.

44

Work
A work card will show up on your
schedule during a time that GoMe
thinks you will be at work.
Currently, this card is actually
quite interactive. Try tapping the
work card in your schedule to
reveal a new page that shows all
of your activities and tasks
related to work. You will typically
only see 1 card representing work
in your schedule, since you
hopefully only work for one
extended period a day.

Social Activities
Every once in a while, you will
likely find a fancy looking event
card with a nice picture and a
title. This card represents a social
activity that you joined. If you for
some reason run out of time in
your day to attend this activity, simply
take it out of your schedule manually,
or, since this is a dynamic schedule,
don’t show up at all and your schedule
automatically update your schedule
based on your actions.

Tasks
Life is always keeping you
busy. Because of this, you
will often find yourself
needing to allocate daily time
towards working on certain
tasks. When you create tasks
in GoMe, they are
automatically loaded into your
schedule before they are due.
In your schedule, you will see
task card to reflect this. Task
cards are also interactive.
When you have finished your task, simply check it off and watch it disappear forever.

